
#### Science and Social Responsibility Ethics of and in Science

#### John Finney

#### Physics Department and London Centre for Nanotechnology



#### A football match several years ago







#### Was it a goal?

Did the ball cross the goal line?

## Should Carroll have told the ref?

- FA Chief Executive Gordon Taylor:
  - "Sir Alex (Ferguson) would have been thrilled with him saying it was a goal, I'm sure," laughed Taylor. "He wouldn't have been best pleased as it was, but that would have made it even worse".
  - "That's starting to be naive because there are so many rubs of the green where you don't get what you feel you should get, and you hope it balances out".

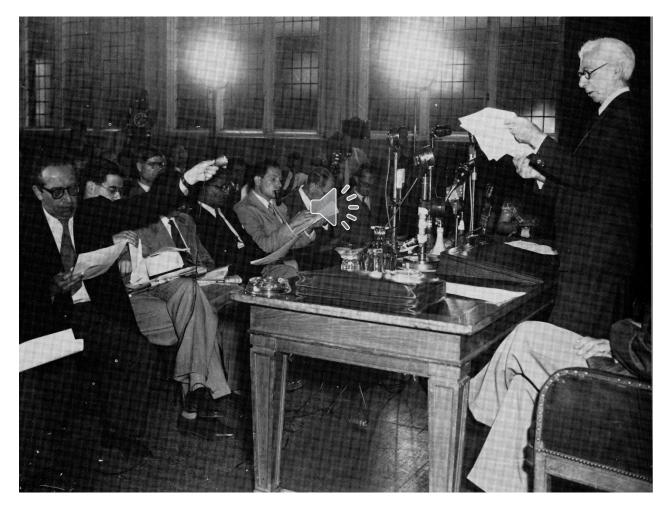
## Should Carroll have told the ref?

- Alex Stepney (ex-Man.U. goalkeeper):
  - "If you can get away with anything in football, especially for a goalkeeper, you need a bit of luck and you've got to go with it,"
  - "I would never have owned up and said `no, that was a goal'. I'd have done exactly the same as Roy. You play on until the referee makes the decision."

## Perhaps we should use modern technology to decide?



#### Let's move on to science...


Examples of ethical implications of scientific research?

- Cloning, stem cells, use of animals in experiments, synthetic biology...
- These are medical related where the implications are often (but not always) fairly obvious.
  - Note the existence of a whole 'field' of medical ethics.

## Examples from the physical sciences?

- Manhattan Project (developed the atom bomb)
- H-bomb development in the 1950s
  - Russell-Einstein Manifesto 1955

#### Bertrand Russell at the Press Launch of the Manifesto



## Examples from the physical sciences?

- Manhattan Project
- H-bomb development
  - Russell-Einstein Manifesto 1955
    - Led to the Pugwash movement of scientists concerned about the mis-use of science in world affairs which played a major role in the development of international arms control ( www.pugwash.org)
- Use of napalm and agent orange in the Vietnam war
- Use of drones in surveillance and warfare
  Development of autonomous weapons

### These examples all:

- relate to the use to which the science is put
- concern the relationship between Science and Society

## These might be called EXTERNAL ethical implications of science.

## **External Ethical Implications**

- How you or I assess these implications will relate to your or my personal, internal 'moral stance'.
- Others may have a different standpoint
- But I think we have a responsibility to think about these things, even though I and my colleagues working at Aldermaston may have to agree to disagree.

### An example: JLF's research

- I study largely by neutron scattering -
  - the structures of solutions of simple organic molecules (e.g. alcohols, amides, ...)
  - the relationship of enzyme dynamics to function

What possible ethical implications might there be about this seemingly abstruse research?

## Some aspects to consider

- Methods used
  - Experimental (neutron scattering) and computational
- Samples used
  - Toxic chemicals
  - Biological samples
- Motivation
  - Potential applications ('external' aspects)
  - Is *lack* of applications a potential problem?

#### These are *external* aspects

#### There are also *internal* ones

# Internal Aspects: the integrity of the scientific process

- Governs the interactions between scientists
  - as against *external* aspects which relate to the interaction between science and society
- Sets out how science works
- It is crucial that, when doing our science, we all observe an agreed code of practice if the integrity of the scientific process is to be maintained.

## Merton's Four Principles (1973)

- Universalism: claims to truth must be tested using pre-established impersonal criteria
- Communality: findings are made available publicly - they must not be hidden
- Disinterestedness: advancement of science is more important than personal interests
- Organised scepticism: all scientific 'truth' is provisional – it is subject to change

## Consequent practical rules 1?

- Procedures must be reported accurately enough information for others to replicate.
- Reported data must be complete & correct, and error limits indicated.
  - Data that don't agree with expectation must not be suppressed
    - It may be an experimental artifact, but....
    - it could mean something very interesting that has not been observed/suspected before!

## Consequent practical rules 2?

- Data must be interpreted objectively
  - can be tempting to let prior expectation influence data analysis
  - politics or expectations of the funding agency should not influence the analysis
    - potential conflicts of interest should always be declared - and looked for in reported work
- Give credit where credit is due

- to all who have contributed to the research

# Final comments: internal aspects

- My scientific knowledge depends on the integrity of those who have gone before me
- In turn, those that follow me have the right to depend on my scientific integrity
  - notable past delusions: N-rays, polywater, cold fusion, ....

#### Otherwise, science has real problems

## An interesting book

• R.A. Hinde: *Bending the Rules*. Oxford University Press 2007

- You might also find interesting with respect to 'pathological science' the last chapter of:
  - J. L. Finney: Water: A Very Short Introduction O.U.P. 2015 (only £7.99...)